PORTUGALIAE MATHEMATICA

VOLUME 31

1 9 7 2

Edição de

«GAZETA DE MATEMÁTICA, LDA»

PORTUGALIAE MATHEMATICA Rua Diário de Notícias, 134, 1.º-Esq. LISBOA-2 (PORTUGAL)

ANOTHER PROOF OF THE DIFFERENTIABILITY OF A MATRIX (1)

DONALD E. MYERS

University of Arisona Tucson, Arisona — U. S. A.

1. Introduction. Let V be the vector space of all distributions on $(-\infty,\infty)$ and W a translation invariant subspace of finite dimension n. In proving that W is spanned by a set of exponential monomials, Anselone and Korevaar [1] used the differentiability of a certain matrix and gave four proofs. We give another brief proof. Following the notation of [1], let $\{F_j(t)\}$ span W which is invariant under T_s , $T_s \cdot F_j(t) = F_j(t+s)$. Then let

$$F_j(t+s) = \sum_{k=1}^n a_{jk}(s) F_k(t)$$
 and $A(s) = (a_{jk})$,

- A(s) is to be shown to be differentiable at 0.
- 2. Proof of differentiability. Using the imbedding space for distributions constructed in [2], each distribution is an equivalence class of Fundamental Sequences of analytic functions. Let $\{j, mf_t(z)\}$ be a representative F. S. S. (Fundamental Sequence) in the equivalence class for $F_j(t)$ and then $\{e^{sz}, mf_t(z)\}$ represents $T_s \cdot F_j(t)$. For each m then we have a relation between analytic functions

$$e^{sz}_{j,m}f_{t}(z) = \sum_{k=1}^{n} a_{jk}(s)_{k,m}f_{t}(z)$$

⁽¹⁾ Received August, 1969.

and by the linear independence of the analytic (and hence continuous) functions there exist z_1, \dots, z_n such that

$$_{m}\hat{f}_{t} = (j, mf_{t}(z_{k}))$$

is non-singular for each m.

If

$$I_i = (b_{jk}), b_{jk} = 0, j \neq i$$

= 1, j = i

we may write

$$\left[\frac{\mathbf{A}(s) - \mathbf{A}(0)}{s}\right]_{m} \hat{f}_{t} = \left[\sum_{k=1}^{n} \frac{e^{s \cdot s_{k}} - 1}{s} \mathbf{I}_{k}\right]_{m} \hat{f}_{t}$$

or

$$\frac{A(s) - A(0)}{s} = \sum_{k=1}^{n} \left(\frac{e^{s \cdot s_k} - 1}{s} \right) I_k.$$

Then taking the limit as $s \to 0$

$$\mathbf{A}'(0) = \sum_{k=1}^{n} z_k \mathbf{I}_k.$$

Finally since the $f_{i,m}f_i(z)$ are continuous for z real, it is clear that the z_k could be chosen with zero imaginary parts.

REFERENCES

- [1] Anselone, P. M. and Korevaar, J., Translation Invariant Subspaces, Proceedings, Amer. Mat\$. Soc. 15 No. 5, (1964), p. 747.
- [2] MYERS, D. E., An Imbedding Space for Schwarts Distributions, Pacific J. Math. 11 No. 4 (1961), p. 1467.